Title of article :
Epigenetic mechanism of stellate cell trans-differentiation
Author/Authors :
Hide Tsukamoto، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
2
From page :
352
To page :
353
Abstract :
Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW, Mann DA. Myofibroblasts are critical cellular elements of wound healing generated at sites of injury by transdifferentiation of resident cells. A paradigm for this process is conversion of hepatic stellate cells (HSC) into hepatic myofibroblasts. Treatment of HSC with DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) blocked transdifferentiation. 5-azadC also prevented loss of IκBα and PPARγ expression that occurs during transdifferentiation to allow acquisition of proinflammatory and profibrogenic characteristics. ChIP analysis revealed IκBα promoter is associated with transcriptionally repressed chromatin that converts to an active state with 5-azadC treatment. The methyl-CpG-binding protein MeCP2 which promotes repressed chromatin structure is selectively detected in myofibroblasts of diseased liver. siRNA knockdown of MeCP2 elevated IκBα promoter activity, mRNA and protein expression in myofibroblasts. MeCP2 interacts with IκBα promoter via a methyl-CpG-dependent mechanism and recruitment into a CBF1 corepression complex. We conclude that MeCP2 and DNA methylation exert epigenetic control over hepatic wound healing and fibrogenesis. [Abstract reproduced by permission of Cell Death Differ 2006; doi:10.1038/sj.cdd.4401979; Epub ahead of print]
Journal title :
Journal of Hepatology
Serial Year :
2007
Journal title :
Journal of Hepatology
Record number :
581299
Link To Document :
بازگشت