Title of article :
A homoplasmic mitochondrial transfer Ribonucleic Acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy
Author/Authors :
Robert W. Taylor، نويسنده , , Carla Giordano، نويسنده , , Mercy M. Davidson، نويسنده , , Giulia d’Amati، نويسنده , , Hugh Bain، نويسنده , , Christine M. Hayes، نويسنده , , Helen Leonard، نويسنده , , Martin J. Barron، نويسنده , , Carlo Casali، نويسنده , , Filippo M. Santorelli، نويسنده , , Michio Hirano، نويسنده , , Robert N. Lightowlers، نويسنده , , Salvatore DiMauro، نويسنده , , Douglass M. Turnbull، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
11
From page :
1786
To page :
1796
Abstract :
Objectives The purpose of this study was to understand the clinical and molecular features of familial hypertrophic cardiomyopathy (HCM) in which a mitochondrial abnormality was strongly suspected. Background Defects of the mitochondrial genome are responsible for a heterogeneous group of clinical disorders, including cardiomyopathy. The majority of pathogenic mutations are heteroplasmic, with mutated and wild-type mitochondrial deoxyribonucleic acid (mtDNA) coexisting within the same cell. Homoplasmic mutations (present in every copy of the genome within the cell) present a difficult challenge in terms of diagnosis and assigning pathogenicity, as human mtDNA is highly polymorphic. Methods A detailed clinical, histochemical, biochemical, and molecular genetic analysis was performed on two families with HCM to investigate the underlying mitochondrial defect. Results Cardiac tissue from an affected child in the presenting family exhibited severe deficiencies of mitochondrial respiratory chain enzymes, whereas histochemical and biochemical studies of the skeletal muscle were normal. Mitochondrial DNA sequencing revealed an A4300G transition in the mitochondrial transfer ribonucleic acid (tRNA)Ile gene, which was shown to be homoplasmic by polymerase chain reaction/restriction fragment length polymorphism analysis in all samples from affected individuals and other maternal relatives. In a second family, previously reported as heteroplasmic for this base substitution, the mutation has subsequently been shown to be homoplasmic. The pathogenic role for this mutation was confirmed by high-resolution Northern blot analysis of heart tissue from both families, revealing very low steady-state levels of the mature mitochondrial tRNAIle. Conclusions This report documents, for the first time, that a homoplasmic mitochondrial tRNA mutation may cause maternally inherited HCM. It highlights the significant contribution that homoplasmic mitochondrial tRNA substitutions may play in the development of cardiac disease. A restriction of the biochemical defect to the affected tissue has important implications for the screening of patients with cardiomyopathy for mitochondrial disease.
Keywords :
LHON , LV , Leber’s hereditary optic neuropathy , left ventricle or ventricular , mtDNA , mitochondrial deoxyribonucleic acid , mt-tRNAIle , mitochondrial transfer ribonucleic acid gene for isoleucine , polymerase chain reaction , PCR , RFLP , restriction fragment length polymorphism , COX , SDH , cytochrome c oxidase , Succinate dehydrogenase , hypertrophic cardiomyopathy , HCM
Journal title :
JACC (Journal of the American College of Cardiology)
Serial Year :
2003
Journal title :
JACC (Journal of the American College of Cardiology)
Record number :
597993
Link To Document :
بازگشت