Title of article :
Effects of MF-tricyclic, a selective cyclooxygenase-2 inhibitor, on atherosclerosis progression and susceptibility to cytomegalovirus replication in apolipoprotein-E knockout mice
Author/Authors :
David Rott، نويسنده , , Jianhui Zhu، نويسنده , , Mary Susan Burnett، نويسنده , , Y. i F. u Zhou، نويسنده , , Alexandra Zalles-Ganley، نويسنده , , Jibike Ogunmakinwa، نويسنده , , Stephen E. Epstein، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Objectives
We examined whether selective cyclooxygenase-2 (COX-2) inhibition in apolipoprotein-E (apoE) deficient mice reduces cytomegalovirus (CMV) replication, and determined whether COX-2 anti-inflammatory activity leads to decreased atherosclerosis.
Background
Evidence suggests that CMV infection contributes to atherosclerosis and that this occurs in part through inflammatory mechanisms. Cyclooxygenase-2 inhibitors are potent anti-inflammatory agents. They also inhibit CMV replication in vitro.
Methods
The apoE deficient mice were either treated or not treated with a selective COX-2 inhibitor, and either infected or not infected with CMV. Viral deoxyribonucleic acid load in salivary glands was determined by quantitative polymerase chain reaction. Atherosclerotic lesion analysis was performed by standard methods.
Results
In vivo COX-2 inhibition, unexpectedly increased viral load: in the CMV-infected animals viral load was 2.58 ± 1.0 in the nontreated group, 4.74 ± 1.38 in the group treated with 12 mg/kg/day MF-tricyclic, and 6.51 ± 1.64 in the group treated with 24 mg/kg/day MF-tricyclic (p TREND = 0.050). This increased viral load was paralleled by increased anti-CMV antibody titers. Most surprisingly, COX-2 inhibition significantly increased early atherosclerotic lesion area, independent of viral infection.
Conclusions
Our study demonstrates that selective inhibition of COX-2 in vivo increases viral load. The finding that inhibition of COX-2 increases atherosclerosis development in apoE deficient mice suggests, unexpectedly, that this enzyme exerts antiatherosclerosis activity, at least in this model.
Keywords :
nuclear factor kappa-B , IL , Interleukin , NF?B , CMV , PG , apolipoprotein-E , polymerase chain reaction , cytomegalovirus , prostaglandin , deoxyribonucleic acid , smooth muscle cells , Cyclooxygenase , reactive oxygen species , DNA , SMCs , Cox , ROS , IgG , IFN? , TNF? , interferon-gamma , Tumor necrosis factor-alpha , immunoglobulin-G , apoE , PCR
Journal title :
JACC (Journal of the American College of Cardiology)
Journal title :
JACC (Journal of the American College of Cardiology)