Title of article
Semantic integration of heterogeneous information sources
Author/Authors
Bergamaschi، Sonia نويسنده , , Castano، Silvana نويسنده , , Vincini، Maurizio نويسنده , , Beneventano، Domenico نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2001
Pages
-214
From page
215
To page
0
Abstract
This study develops Bayesian methods for estimating the parameters of a stochastic switching regression model. Markov Chain Monte Carlo methods, data augmentation, and Gibbs sampling are used to facilitate estimation of the posterior means. The main feature of these methods is that the posterior means are estimated by the ergodic averages of samples drawn from conditional distributions, which are relatively simple in form and more feasible to sample from than the complex joint posterior distribution. A simulation study is conducted comparing model estimates obtained using data augmentation, Gibbs sampling, and the maximum likelihood EM algorithm and determining the effects of the accuracy of and bias of the researcherʹs prior distributions on the parameter estimates.
Keywords
Information integration , Description Logics , Semantic heterogeneity , Semistructured data , Clustering techniques , Information extraction
Journal title
DATA & KNOWLEDGE ENGINEERING
Serial Year
2001
Journal title
DATA & KNOWLEDGE ENGINEERING
Record number
6038
Link To Document