Title of article :
Adaptive fuzzy robust tracking controller design via small gain approach and its application
Author/Authors :
Yang، Yansheng نويسنده , , Ren، Junsheng نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
An adaptive fuzzy robust tracking control (AFRTC) algorithm is proposed for a class of nonlinear systems with the uncertain system function and uncertain gain function, which are all the unstructured (or nonrepeatable) state-dependent unknown nonlinear functions arising from modeling errors and external disturbances. The Takagi-Sugeno type fuzzy logic systems are used to approximate unknown uncertain functions and the AFRTC algorithm is designed by use of the inputto-state stability approach and small gain theorem. The algorithm is highlighted by three advantages: 1) the uniform ultimate boundedness of the closed-loop adaptive systems in the presence of nonrepeatable uncertainties can be guaranteed; 2) the possible controller singularity problem in some of the existing adaptive control schemes met with feedback linearization techniques can be removed; and 3) the adaptive mechanism with minimal learning parameterizations can be obtained. The performance and limitations of the proposed method are discussed. The uses of the AFRTC for the tracking control design of a pole-balancing robot system and a ship autopilot system to maintain the ship on a predetermined heading are demonstrated through two numerical examples. Simulation results show the effectiveness of the control scheme.
Keywords :
Hilbert transform , admissible majorant , inner function , subspace , shift operator , Hardy space , model
Journal title :
IEEE TRANSACTIONS ON FUZZY SYSTEMS
Journal title :
IEEE TRANSACTIONS ON FUZZY SYSTEMS