Title of article :
Online entropy manipulation: stochastic information gradient
Author/Authors :
D.، Erdogmus, نويسنده , , II، Hild, K.E., نويسنده , , J.C.، Principe, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-241
From page :
242
To page :
0
Abstract :
Entropy has found significant applications in numerous signal processing problems including independent components analysis and blind deconvolution. In general, entropy estimators require O(N/sup 2/) operations, N being the number of samples. For practical online entropy manipulation, it is desirable to determine a stochastic gradient for entropy, which has O(N) complexity. In this paper, we propose a stochastic Shannonʹs entropy estimator. We determine the corresponding stochastic gradient and investigate its performance. The proposed stochastic gradient for Shannonʹs entropy can be used in online adaptation problems where the optimization of an entropy-based cost function is necessary.
Keywords :
Power-aware
Journal title :
IEEE Signal Processing Letters
Serial Year :
2003
Journal title :
IEEE Signal Processing Letters
Record number :
62050
Link To Document :
بازگشت