Title of article :
A neural-learning-based reflectance model for 3-D shape reconstruction
Author/Authors :
T.W.S.، Chow, نويسنده , , Cho، Siu-Yeung نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
In this letter, the limitation of the conventional Lambertian reflectance model is addressed and a new neural-based reflectance model is proposed of which the physical parameters of the reflectivity under different lighting conditions are interpreted by the neural network behavior of the nonlinear input-output mapping. The idea of this method is to optimize a proper reflectance model by a neural learning algorithm and to recover the object surface by a simple shape-from-shading (SFS) variational method with this neural-based model. A unified computational scheme is proposed to yield the best SFS solution. This SFS technique has become more robust for most objects, even when the lighting conditions are uncertain.
Journal title :
IEEE Transactions on Industrial Electronics
Journal title :
IEEE Transactions on Industrial Electronics