Title of article :
Hybrid identification of nuclear power plant transients with artificial neural networks
Author/Authors :
M.J.، Embrechts, نويسنده , , S.، Benedek, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
-685
From page :
686
To page :
0
Abstract :
Proper and rapid identification of malfunctions (transients) is of premier importance for the safe operation of nuclear power plants. Feedforward neural networks trained with the backpropagation (BP) algorithm are frequently applied to model simulated nuclear power plant malfunctions. The correct identification of unlabeled transients-or transients of the "donʹtknow" type have proven to be especially challenging. A novel hybrid neural network methodology is presented which also correctly classifies the unlabeled transients. From this analysis the importance for properly accommodating practical aspects such as the drift of electronics elements of a simulator, the digitization of simulated and actual plant signals, and the accumulating errors during numerical integration became obvious. Beside the feedforward neural networks trained with the BP algorithm, many other types of networks and codes were used for finding the best (sensitive and robust) algorithms. Various neural network based models were successfully applied to identify labeled and unlabeled malfunctions of the Hungarian Paks nuclear power plant simulator. The BP and probabilistic methods have been proven as the most robust against the misleading recognition of unlabeled malfunctions.
Journal title :
IEEE Transactions on Industrial Electronics
Serial Year :
2004
Journal title :
IEEE Transactions on Industrial Electronics
Record number :
62553
Link To Document :
بازگشت