Title of article :
Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
Author/Authors :
J.، Gonzalez, نويسنده , , I.، Rojas, نويسنده , , J.، Ortega, نويسنده , , H.، Pomares, نويسنده , , F.J.، Fernandez, نويسنده , , A.F.، Diaz, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-1477
From page :
1478
To page :
0
Abstract :
This paper presents a multiobjective evolutionary algorithm to optimize radial basis function neural networks (RBFNNs) in order to approach target functions from a set of input-output pairs. The procedure allows the application of heuristics to improve the solution of the problem at hand by including some new genetic operators in the evolutionary process. These new operators are based on two well-known matrix transformations: singular value decomposition (SVD) and orthogonal least squares (OLS), which have been used to define new mutation operators that produce local or global modifications in the radial basis functions (RBFs) of the networks (the individuals in the population in the evolutionary procedure). After analyzing the efficiency of the different operators, we have shown that the global mutation operators yield an improved procedure to adjust the parameters of the RBFNNs.
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Serial Year :
2003
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Record number :
62772
Link To Document :
بازگشت