Title of article :
A neural-network appearance-based 3-D object recognition using independent component analysis
Author/Authors :
K.، Khorasani, نويسنده , , H.S.، Sahambi, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-137
From page :
138
To page :
0
Abstract :
This paper presents results on appearance-based three-dimensional (3-D) object recognition (3DOR) accomplished by utilizing a neural-network architecture developed based on independent component analysis (ICA). ICA has already been applied for face recognition in the literature with encouraging results. In this paper, we are exploring the possibility of utilizing the redundant information in the visual data to enhance the view based object recognition. The underlying premise here is that since ICA uses high-order statistics, it should in principle outperform principle component analysis (PCA), which does not utilize statistics higher than two, in the recognition task. Two databases of images captured by a CCD camera are used. It is demonstrated that ICA did perform better than PCA in one of the databases, but interestingly its performance was no better than PCA in the case of the second database. Thus, suggesting that the use of ICA may not necessarily always give better results than PCA, and that the application of ICA is highly data dependent. Various factors affecting the differences in the recognition performance using both methods are also discussed.
Keywords :
transformation , Oriented martensite , Self-accommodating martensite , TiNi film
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Serial Year :
2003
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Record number :
62788
Link To Document :
بازگشت