Title of article :
Absolute exponential stability of a class of continuous-time recurrent neural networks
Author/Authors :
Hu، Sanqing نويسنده , , Wang، Jun نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-34
From page :
35
To page :
0
Abstract :
This paper presents a new result on absolute exponential stability (AEST) of a class of continuous-time recurrent neural networks with locally Lipschitz continuous and monotone nondecreasing activation functions. The additively diagonally stable connection weight matrices are proven to be able to guarantee AEST of the neural networks. The AEST result extends and improves the existing absolute stability and AEST ones in the literature.
Keywords :
TiNi film , transformation , Oriented martensite , Self-accommodating martensite
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Serial Year :
2003
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Record number :
62801
Link To Document :
بازگشت