Title of article :
A parameter optimization method for radial basis function type models
Author/Authors :
Peng، Hui نويسنده , , T.، Ozaki, نويسنده , , V.، Haggan-Ozaki, نويسنده , , Y.، Toyoda, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-431
From page :
432
To page :
0
Abstract :
This paper considers the nonlinear systems modeling problem for control. A structured nonlinear parameter optimization method (SNPOM) adapted to radial basis function (RBF) networks and an RBF network-style coefficients autoregressive model with exogenous variable model parameter estimation is presented. This is an offline nonlinear model parameter optimization method, depending partly on the Levenberg-Marquardt method for nonlinear parameter optimization and partly on the least-squares method using singular value decomposition for linear parameter estimation. When compared with some other algorithms, the SNPOM accelerates the computational convergence of the parameter optimization search process of RBF-type models. The usefulness of this approach is illustrated by means of several examples.
Keywords :
two-hidden-layer feedforward networks (TLFNs) , Learning capability , neural-network modularity , Storage capacity
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Serial Year :
2003
Journal title :
IEEE TRANSACTIONS ON NEURAL NETWORKS
Record number :
62823
Link To Document :
بازگشت