Title of article :
BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells
Author/Authors :
Xianwu Li، نويسنده , , Hsueh-Ying Yang، نويسنده , , Cecilia M. Giachelli، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
7
From page :
271
To page :
277
Abstract :
Vascular calcification is associated with increased risk of cardiovascular events that are the most common cause of death in patients with end-stage renal disease. Clinical and experimental studies indicate that hyperphosphatemia is a risk factor for vascular calcification and cardiovascular mortality in these patients. Our previous studies demonstrated that phosphate transport through the type III sodium-dependent phosphate cotransporter, Pit-1, was necessary for phosphate-induced calcification and osteochondrogenic phenotypic change in cultured human smooth muscle cells (SMC). BMP-2 is a potent osteogenic protein required for osteoblast differentiation and bone formation that has been implicated in vascular calcification. In the present study, we have examined the effects of BMP-2 on human SMC calcification in vitro. We found that treatment of SMC with BMP-2 enhanced elevated phosphate-induced calcification, but did not induce calcification under normal phosphate conditions. mRNAs for BMP receptors, including ALK2, ALK3, ALK6, BMPR-II, ActR-IIA and ActR-IIB were all detected in human SMCs. Mechanistically, BMP-2 dose-dependently stimulated phosphate uptake in SMC (200 ng/ml BMP-2 vs. vehicle: 13.94 vs. 7.09 nmol/30 min/mg protein, respectively). Real-time PCR and Western blot revealed the upregulation of Pit-1 mRNA and protein levels, respectively, by BMP-2. More importantly, inhibition of phosphate uptake by a competitive inhibitor of sodium-dependent phosphate cotransport, phosphonoformic acid, abrogated BMP-2-induced calcification. These results indicate that phosphate transport via Pit-1 is crucial in BMP-2-regulated SMC calcification. In addition, BMP-2-induced Runx2 and inhibited SM22 expression, indicating that it promotes osteogenic phenotype transition in these cells. Thus, BMP-2 may promote vascular calcification via increased phosphate uptake and induction of osteogenic phenotype modulation in SMC.
Keywords :
Pit-1 , Vascular calcification , BMP-2 , Sodium-dependent phosphate cotransporter
Journal title :
Atherosclerosis
Serial Year :
2008
Journal title :
Atherosclerosis
Record number :
633070
Link To Document :
بازگشت