• Title of article

    INFERENCE FOR THE JUMP PART OF QUADRATIC VARIATION OF IT SEMIMARTINGALES

  • Author/Authors

    VERAART، ALMUT E.D. نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    38
  • From page
    331
  • To page
    368
  • Abstract
    Recent research has focused on modeling asset prices by Itˆo semimartingales. In such a modeling framework, the quadratic variation consists of a continuous and a jump component. This paper is about inference on the jump part of the quadratic variation, which can be estimated by the difference of realized variance and realized multipower variation. The main contribution of this paper is twofold. First, it provides a bivariate asymptotic limit theory for realized variance and realized multipower variation in the presence of jumps. Second, this paper presents new, consistent estimators for the jump part of the asymptotic variance of the estimation bias. Eventually, this leads to a feasible asymptotic theory that is applicable in practice. Finally, Monte Carlo studies reveal a good finite sample performance of the proposed feasible limit theory.
  • Journal title
    ECONOMETRIC THEORY
  • Serial Year
    2010
  • Journal title
    ECONOMETRIC THEORY
  • Record number

    653196