Title of article :
Content Based Medical Image Retrieval Based on BEMD: use of Generalized Gaussian Density to model BIMFs coefficients
Author/Authors :
Said Jai-Andaloussi، نويسنده , , Mathieu Lamard، نويسنده , , Guy Cazuguel، نويسنده , , Hamid Tairi، نويسنده , , Mohamed Meknassi، نويسنده , , Christian Roux، نويسنده , , Beatrice Cochener، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
29
To page :
38
Abstract :
In this paper, we address the problem of medical diagnosis aid through content based image retrieval methods (CBIR). We propose to characterize images without extracting local features, by using global information extracted from the image Bidimensional Empirical Mode Decomposition (BEMD). This method decompose image into a set of functions named Bidimensional Intrinsic Mode Functions (BIMF) and a residue. The generalized Gaussian density function (GGD) is used for modelling the coefficients derived from each BIMF, and to measure similarity between images we compute the similarity between GGDs by using the Kullback–Leibler Divergence (KLD). Retrieval efficiency is given for different databases including a diabetic retinopathy, mammography and a face database. Results are promising: the retrieval efficiency is higher than 95% for some cases.
Keywords :
BEMD , Generalized Gaussian density , Kullback–Leibler divergence , Content-based image retrieval
Journal title :
ICGST International Journal on Graphics,Vision and Image Processing
Serial Year :
2010
Journal title :
ICGST International Journal on Graphics,Vision and Image Processing
Record number :
659290
Link To Document :
بازگشت