Title of article :
Invariant features comparison in hidden markov model and SIFT for offline handwritten signature database
Author/Authors :
Neeraj Shukla، نويسنده , , Madhu Shandilya، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
13
From page :
31
To page :
43
Abstract :
In Handwritten signatures analyzed for forgery have to undergo feature extraction process, due to varied samples in size rotation and intra-domain changes, invariance has to be achieved during feature extraction process; circular Hidden Markov Model with discrete radon transform approach of feature extraction provides invariance. On other hand Scale Invariant Feature Transform (SIFT) has inherent invariant feature extraction approach. This paper compares both approaches on common signature databases for False acceptance rate(FAR),False Rejection Rate(FRR) and Equal Error Rate(EER)
Keywords :
off-line , Discrete Radon Transform (DRT) , Signature forgery , Viterbi , Baum-Welch , Hidden Markov Model (HMM) TP True Positive FP False Positive FN False Negative TN True Negative FAR False Acceptance Rate HMM Hidden Markov Model NN Neural Networks SIFT Sca
Journal title :
International Journal of Computer Applications
Serial Year :
2010
Journal title :
International Journal of Computer Applications
Record number :
659751
Link To Document :
بازگشت