Title of article :
Development and evaluation of evidence-based nursing (EBN) filters and related databases
Author/Authors :
Mary A. Lavin، نويسنده , , Mary M. Krieger، نويسنده , , Geralyn A. Meyer، نويسنده , , Mark A. Spasser، نويسنده , , Tome Cvitan، نويسنده , , Cordie G. Reese، نويسنده , , Judith H. Carlson، نويسنده , , Anne G. Perry، نويسنده , , Patricia McNary، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
12
From page :
104
To page :
115
Abstract :
Objectives: Difficulties encountered in the retrieval of evidence-based nursing (EBN) literature and recognition of terminology, research focus, and design differences between evidence-based medicine and nursing led to the realization that nursing needs its own filter strategies for evidence-based practice. This article describes the development and evaluation of filters that facilitate evidence-based nursing searches. Methods: An inductive, multistep methodology was employed. A sleep search strategy was developed for uniform application to all filters for filter development and evaluation purposes. An EBN matrix was next developed as a framework to illustrate conceptually the placement of nursing-sensitive filters along two axes: horizontally, an adapted nursing process, and vertically, levels of evidence. Nursing diagnosis, patient outcomes, and primary data filters were developed recursively. Through an interface with the PubMed search engine, the EBN matrix filters were inserted into a database that executes filter searches, retrieves citations, and stores and updates retrieved citations sets hourly. For evaluation purposes, the filters were subjected to sensitivity and specificity analyses and retrieval set comparisons. Once the evaluation was complete, hyperlinks providing access to any one or a combination of completed filters to the EBN matrix were created. Subject searches on any topic may be applied to the filters, which interface with PubMed. Results: Sensitivity and specificity for the combined nursing diagnosis and primary data filter were 64% and 99%, respectively; for the patient outcomes filter, the results were 75% and 71%, respectively. Comparisons were made between the EBN matrix filters (nursing diagnosis and primary data) and PubMedʹs Clinical Queries (diagnosis and sensitivity) filters. Additional comparisons examined publication types and indexing differences. Review articles accounted for the majority of the publication type differences, because ʹʹreviewʹʹ was accepted by the CQ but was ʹʹNOTʹdʹʹ by the EBN filter. Indexing comparisons revealed that although the term ʹʹnursing diagnosisʹʹ is in Medical Subject Headings (MeSH), the nursing diagnoses themselves (e.g., sleep deprivation, disturbed sleep pattern) are not indexed as nursing diagnoses. As a result, abstracts deemed to be appropriate nursing diagnosis by the EBN filter were not accepted by the CQ diagnosis filter. conclusions: The EBN filter capture of desired articles may be enhanced by further refinement to achieve a greater degree of filter sensitivity. Retrieval set comparisons revealed publication type differences and indexing issues. The EBN matrix filter ʹʹNOTʹdʹʹ out ʹʹreview,ʹʹ while the CQ filter did not. Indexing issues were identified that explained the retrieval of articles deemed appropriate by the EBN filter matrix but not included in the CQ retrieval. These results have MeSH definition and indexing implications as well as implications for clinical decision support in nursing practice.
Journal title :
Journal of the Medical Library Association (JMLA)
Serial Year :
2005
Journal title :
Journal of the Medical Library Association (JMLA)
Record number :
663533
Link To Document :
بازگشت