Abstract :
A standard method for refuting a set of claims is to show that it implies a contradiction. Stephen Clark questions this method on the grounds that the Law of Non- Contradiction, together with the other fundamental laws of logic do not accord with everyday reality. He accounts for vagueness by suggesting that, for any vague predicate ‘F’, an ordinary object is typically to some extent both F and not-F, and that objects do not change abruptly from being F to being not-F. I challenge Clark’s ‘deconstruction’ of logic, and show that, in characterizing vagueness and dealing with the associated Sorites paradox, we can accommodate his observation that change from being F to being not-F is ineradically continuous without tampering with any fundamental logical laws.