Title of article :
Shock refraction from classical gas to relativistic plasma environments
Author/Authors :
Rony Keppens، نويسنده , , Peter Delmont، نويسنده , , Zakaria Meliani، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
The interaction of (strong) shock waves with localized density changes is of particular relevance to laboratory as well as astrophysical research. Shock tubes have been intensively studied in the lab for decades and much has been learned about shocks impinging on sudden density contrasts. In astrophysics, modern observations vividly demonstrate how (even relativistic) winds or jets show complex refraction patterns as they encounter denser interstellar material. In this contribution, we highlight recent insights into shock refraction patterns, starting from classical up to relativistic hydro and extended to magnetohydrodynamic scenarios. Combining analytical predictions for shock refraction patterns exploiting Riemann solver methodologies, we confront numerical, analytical and (historic) laboratory insights. Using parallel, gridadaptive simulations, we demonstrate the fate of Richtmyer-Meshkov instabilities when going from gaseous to magnetized plasma scenarios. The simulations invoke idealized configurations closely resembling lab analogues, while extending them to relativistic flow regimes.
Keywords :
MHD , Shock waves , instabilities
Journal title :
Proceedings of the International Astronomical Union
Journal title :
Proceedings of the International Astronomical Union