Title of article :
Ant Colony Optimization Based on Adaptive Volatility Rate of Pheromone Trail
Author/Authors :
Zhaoquan CAI، نويسنده , , Han HUANG، نويسنده , , Yong Qin، نويسنده , , Xianheng MA، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It is usually set experimentally in the literatures for the application of ACO. The present paper first proposes an adaptive strategy for the volatility rate of pheromone trail according to the quality of the solutions found by artificial ants. Second, the strategy is combined with the setting of other parameters to form a new ACO method. Then, the proposed algorithm can be proved to converge to the global optimal solution. Finally, the experimental results of computing traveling salesman problems and film-copy deliverer problems also indicate that the proposed ACO approach is more effective than other ant methods and non-ant methods.
Keywords :
pheromone trail , Ant Colony Optimization (ACO) , Adaptive Volatility Rate
Journal title :
International Journal of Communications, Network and System Sciences
Journal title :
International Journal of Communications, Network and System Sciences