Title of article :
A New Global Asymptotic Stability Result of Delayed Neural Networks via Nonsmooth Analysis
Author/Authors :
Yaning Gu، نويسنده , , Deyou Liu، نويسنده , , Wenjuan Wu، نويسنده , , Jingwen Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
294
To page :
302
Abstract :
In the paper, we obtain new sufficient conditions ensuring existence, uniqueness, and asymptotic stability of the equilibrium point for delayed neural network via nonsmooth analysis, which makes use of the Lipschitz property of the functions. Based on this tool of nonsmooth analysis, we first obtain a couple of general results concerning the existence and uniqueness of the equilibrium point. Then we drive some new sufficient conditions ensuring global asymptotic stability of the equilibrium point. Finally, there are the illustrative examples feasibility and effectiveness of our results. Throughout our paper, the activation function is a more general function which has a wide application.
Keywords :
Delayed neural networks , Global asymptotic stability , Nonsmooth analysis
Journal title :
International Journal of Communications, Network and System Sciences
Serial Year :
2010
Journal title :
International Journal of Communications, Network and System Sciences
Record number :
674198
Link To Document :
بازگشت