Title of article :
Genetic Algorithm Optimization for Coefficient of FFT Processor
Author/Authors :
Pang Jia Hong، نويسنده , , Nasri Sulaiman، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
This paper describes the implementation of Single-objective Genetic Algorithm (SOGA) and Multi-objectives Genetic Algorithm (MOGA) to optimize the pipelined Fast Fourier Transform (FFT) coefficient in order to improve the performance of Signal to Noise Ratio (SNR) and also the Switching Activity (SA). The SA and SNR are optimized separately in a Radix-4 Single Path Delay Feedback (R4SDF) pipelined Fast Fourier Transform (FFT) processor using SOGA. The MOGA optimized both objectives using Weighted-Sum approach
Keywords :
FFT processor , Switching activity , Signal to noise ratio
Journal title :
Australian Journal of Basic and Applied Sciences
Journal title :
Australian Journal of Basic and Applied Sciences