Title of article :
Hybrid learning of Syntactic and Semantic Dependencies
Author/Authors :
Bor-Lin Yao، نويسنده , , Chengjie Sun، نويسنده , , Lu Li، نويسنده , , Zhixin Hao & Xiaolong Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
13
From page :
187
To page :
199
Abstract :
This paper presents our solution for jointly parsing of syntactic and semantic dependencies. The Maximum Entropy (ME) classifier is selected in this system. Also the Mutual Information (MI) model was utilized into feature selection of dependency labeling. Results show that the MI model allows the system to get better performance and reduce training hours.
Keywords :
Maximum Entropy , Mutual information , Semantic Role Labeling (SRL) , Syntactic Parser
Journal title :
Computer and Information Science
Serial Year :
2010
Journal title :
Computer and Information Science
Record number :
678531
Link To Document :
بازگشت