Title of article :
NON-STRUCTURED MATERIALS SCIENCE DATA SHARING BASED ON SEMANTIC ANNOTATION
Author/Authors :
Changjun Hu، نويسنده , , Chunping Ouyang، نويسنده , , Jinbin Wu، نويسنده , , Xiaoming Zhang، نويسنده , , Chongchong Zhao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
52
To page :
61
Abstract :
The explosion of non-structured materials science data makes it urgent for materials researchers to resolve the problem of how to effectively share this information. Materials science image data is an important class of non-structured data. This paper proposes a semantic annotation method to resolve the problem of materials science image data sharing. This method is implemented by a four-layer architecture, which includes ontology building, semantic annotation, reasoning service, and application. We take metallographic image data as an example and build a metallographic image OWL-ontology. Users can accomplish semantic annotation of metallographic image according to the ontology. Reasoning service is provided in a data sharing application to demonstrate the effective sharing of materials science image data through adding semantic annotation.
Keywords :
Semantic annotation , Metallographic image ontology , Materials science image , Non-structured data , Data sharing , Domain knowledge ontology
Journal title :
Data Science Journal
Serial Year :
2009
Journal title :
Data Science Journal
Record number :
679575
Link To Document :
بازگشت