Title of article :
Asymptotics of the eigenvalues for the operators with transition points and Neumann conditions
Author/Authors :
NEAMATY، A. نويسنده , , Hovhannisyan، A. نويسنده , , SAZGAR، E. A. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
8
From page :
152
To page :
159
Abstract :
In this paper we consider the following differential equation LW?(d^2 W)/?d??^2 - (?(?)-u^2 (1-?^2 ) ) W=0, ??[a,b] (1) Where ??[a,b],a=-b > 1, u is a large parameter and ?(?) is a continuous function on [a,b]. For equation (1), ?=±1 are transition points and r(?)=1-?^2 be a weight function. Using the asymptotic solution constructed by Olver in [3] and [5], we study the asymptotic behavior of the eigenvalues of the operatorL with Neumann boundary conditions W^ʹ (a)=W^ʹ (b)=0.
Journal title :
The Journal of Mathematics and Computer Science(JMCS)
Serial Year :
2010
Journal title :
The Journal of Mathematics and Computer Science(JMCS)
Record number :
682064
Link To Document :
بازگشت