Title of article :
New Efficient Strategy to Accelerate k-Means Clustering Algorithm
Author/Authors :
Mohʹd Belal Al- Zoubi، نويسنده , , Amjad Hudaib، نويسنده , , Ammar Huneiti، نويسنده , , Bassam Hammo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
4
From page :
1247
To page :
1250
Abstract :
One of the most popular clustering techniques is the k-means clustering algorithm. However, the utilization of the k-means is severely limited by its high computational complexity. In this study, we propose a new strategy to accelerate the k-means clustering algorithm through the Partial Distance (PD) logic. The proposed strategy avoids many unnecessary distance calculations by applying efficient PD strategy. Experiments show the efficiency of the proposed strategy when applied to different data sets.
Keywords :
Clustering , k-means algorithm , partial distance , Pattern recognition
Journal title :
American Journal of Applied Sciences
Serial Year :
2008
Journal title :
American Journal of Applied Sciences
Record number :
688473
Link To Document :
بازگشت