Title of article :
Lw*wc AND Rw*wc AND WEAK AMENABILITY OF BANACH ALGEBRAS
Author/Authors :
Haghnejad Azar، Kazem نويسنده Faculty of Mathematical Sciences, University of Mohaghegh Ardabili Haghnejad Azar, Kazem , Ranjbar، Zari نويسنده Faculty of Mathematical Sciences, University of Mohaghegh Ardabili Ranjbar, Zari
Issue Information :
روزنامه با شماره پیاپی 0 سال 2012
Abstract :
We introduce some new concepts as left-weak*-weak convergence property [Lw*wc-property] and right-weak*-weak convergence property [Rw*wc-property] for Banach algebra A. Suppose that A and A**, respectively, have Rw*wc-property and Lw*wc-property, then if A** is weakly amenable, it follows that A is weakly amenable. Let D : A\to A** be a surjective derivation. If Dʹʹ is a derivation, then A is Arens regular.
Journal title :
Journal of Hyperstructures
Journal title :
Journal of Hyperstructures