Title of article :
Colloid and suspended particle migration experiments in a granite fracture
Author/Authors :
Peter Vilks، نويسنده , , Don B. Bachinski، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
11
From page :
269
To page :
279
Abstract :
To determine the mobility of colloids (0.001–0.45 μm) and suspended particles (> 0.45 μm) in granite fractures, laboratory particle-migration and conservative tracer studies have been carried out in a natural fracture within a large granite block, with overall dimensions of 83×90×60 cm. Flow fields within this horizontal fracture were controlled through a set of 9 boreholes drilled orthogonally to the fracture. Laboratory experiments were performed using a range of average water velocities which contained values low enough to closely approximate the natural flow velocities of < 2 m yr−1 in plutonic rocks of the Canadian Shield. The particles used had diameters between 0.02 and 22 μm, and included latex spheres, glass spheres and colloidal silica. Migration experiments were carried out with a filtered groundwater, ionic strength of 0.01 mol kg−1, obtained from a granite fracture within the Whiteshell Research Area of Manitoba. Flushing experiments showed that suspended particles as large as 40 μm could be mobilized from the fracture surface. The mobility of suspended particles was significantly less than that of colloids. However, within the size range of colloids used in these studies (0.022–0.090 μm), colloid size did not affect colloid migration. Although, in general, colloids eluted ahead of the conservative tracer, colloid mobility was significantly reduced when the average groundwater velocity dropped below between 32 and 240 m yr−1. Colloid transport was found to be very sensitive to flow path and flow direction.
Journal title :
Journal of Contaminant Hydrology
Serial Year :
1996
Journal title :
Journal of Contaminant Hydrology
Record number :
692670
Link To Document :
بازگشت