Title of article :
A Family of Commutative Endomorphism Algebras
Author/Authors :
F. Okoh، نويسنده , , F. Zorzitto، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
27
From page :
501
To page :
527
Abstract :
LetK(X) be the quotient field of the polynomial ringK[X] over an algebraically closed fieldK. Given an integern ≥ 2, a finite sequencem = (m2,…,mn) ofn − 1 positive integers, a sequenceα = (α2,…,αn) ofK-linear functionals onK(X), and a height functionh, there is attached a Kronecker moduleE = E(m, h, α). In this paper we show that whenEhas no finite-dimensional direct summand then End Eis a commutativeK-subalgebra of the algebra ofn × nmatrices overK(X). Consequently, when End Eis an integral domain its transcendence degree overKis at most one. We give sufficient conditions for End Eto be isomorphic toKand also show thatKis the only field that occurs as End E. Examples whereK[X],K[X, X − 1], and some subalgebras ofK(X)noccur as End Eare given. The determination of all the commutativeK-subalgebras ofMn(K(X)) realizable as End Eremains open. Yet surprisingly it can be shown that the coordinate ring of a cubic equation in Weierstrass normal formY2 = X3 + aX2 + bX + cis realizable.
Journal title :
Journal of Algebra
Serial Year :
1998
Journal title :
Journal of Algebra
Record number :
694082
Link To Document :
بازگشت