Title of article :
Tame Fields and Tame Extensions,
Author/Authors :
Sudesh K. Khanduja، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
9
From page :
647
To page :
655
Abstract :
LetVbe a henselian valuation of any rank of a fieldKand let be the extension ofVto a fixed algebraic closure ofK. In this paper, it is proved that (K, V) is a tame field, i.e., every finite extension of (K, V) is tamely ramified, if and only if, to each α \K, there correspondsa Kfor which (α − a) ≥ ΔK(α), where ΔK(α) = min{ (α′ − α)α′ runs over allK-conjugates of α}. A special case of the previous result, whenKis a perfect field of nonzero characteristic was proved in 1995, with the purpose of completing a result of James Ax [S. K. Khanduja,J. Algebra172(1995), 147–151].
Keywords :
valued fields , valuations and their generalizations
Journal title :
Journal of Algebra
Serial Year :
1998
Journal title :
Journal of Algebra
Record number :
694088
Link To Document :
بازگشت