Title of article :
Finite Groups over Arithmetical Rings and Globally Irreducible Representations,
Author/Authors :
F. van Oystaeyen، نويسنده , , A. E. Zalesski ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
19
From page :
418
To page :
436
Abstract :
Given the ring of integersRof an algebraic number fieldK, for which natural numbernis there a finite groupG GL(n, R) such thatRG, theR-span ofG, coincides withM(n, R), the ring of (n × n)-matrices overR? GivenG GL(n, R) we show thatRG = M(n, R) if and only if the Brauer reduction ofGmodulo every prime is absolutely irreducible. In addition, the question above is fully answered ifnis an odd prime.
Journal title :
Journal of Algebra
Serial Year :
1999
Journal title :
Journal of Algebra
Record number :
694550
Link To Document :
بازگشت