Title of article :
An Asphericity Conjecture and Kaplansky Problem on Zero Divisors
Author/Authors :
S.V Ivanov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
7
From page :
13
To page :
19
Abstract :
Suppose a group representationH = is aspherical,x ,W( x) is a word in alphabet ( x) ± 1with nonzero sum of exponents onx, and the groupHnaturally embeds inG = x W( x) . It is conjectured that the presentationG = x W( x) is aspherical if and only ifGis torsion free. It is proven that if this conecture is false andG = x W( x) is a counterexample, then the integral group ring (G) of torsion free groupGwill contain zero divisors. Some special cases when this conjecture holds are also indicated.
Journal title :
Journal of Algebra
Serial Year :
1999
Journal title :
Journal of Algebra
Record number :
694566
Link To Document :
بازگشت