Title of article :
On Some Classes of Artinian Rings
Author/Authors :
Dinh Van Huynh، نويسنده , , S. Tariq Rizvi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
21
From page :
133
To page :
153
Abstract :
A module M is called a CS-module if every submodule of M is essential in a direct summand of M. A ring R is called CS-semisimple if every right R-module is CS. For a ring R, we show that:• is right artinian with Jacobson radical cube zero if every countably generated right -module is a direct sum of a projective module and a CS-module.• The following conditions are equivalent: (i) Every countably generated right -module is a direct sum of a projective module and a quasicontinuous module; and (ii) every right -module is a direct sum of a projective module and a quasi-injective module. We describe the structure of rings in (2) and show that such a ring is not necessarily CS-semisimple.
Journal title :
Journal of Algebra
Serial Year :
1999
Journal title :
Journal of Algebra
Record number :
694820
Link To Document :
بازگشت