Title of article :
Lattice-Ordered Matrix Algebras with the Usual Lattice Order
Author/Authors :
Jingjing Ma، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
11
From page :
406
To page :
416
Abstract :
Let R be a unital lattice-ordered algebra over a totally ordered field F and Fn be the n × n(n ≥ 2) matrix algebra over F. It is shown that under certain conditions R contains a lattice-ordered subalgebra which is isomorphic to (Fn, (F + )n). In particular, let (Fn, P) be a lattice-ordered algebra over F with the positive cone P. If a certain element is positive in (Fn, P), then (Fn, P) is isomorphic to (Fn, (F + )n).
Keywords :
lattice-ordered algebra , Matrix Algebra
Journal title :
Journal of Algebra
Serial Year :
2000
Journal title :
Journal of Algebra
Record number :
695022
Link To Document :
بازگشت