Title of article :
Skew Derivations Whose Invariants Satisfy a Polynomial Identity,
Author/Authors :
Jeffrey Bergen، نويسنده , , Piotr Grzeszczuk، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
28
From page :
710
To page :
737
Abstract :
If σ is an automorphism and δ is a q-skew σ-derivation of a ring R, then the subring of invariants is the set R(δ) = {r R δ(r) = 0}. The main result of this paper is Let R be a prime algebra with a q-skew σ-derivation δ, where δ and σ are algebraic. If R(δ)satisfies a P.I., then R satisfies a P.I. If δ is separable, then we also obtain the following result: Let δ be a separable q-skew σ-derivation of an algebra R, where δ and σ are algebraic.• (i) • (ii) ∩ σ When R is a domain, it is necessary to assume neither that σ is algebraic nor that δ is q-skew as we prove If R is a domain with an algebraic σ-derivation δ such that R(δ) satisfies a P.I., then R also satisfies a P.I.
Journal title :
Journal of Algebra
Serial Year :
2000
Journal title :
Journal of Algebra
Record number :
695041
Link To Document :
بازگشت