Title of article :
Zeta Functions of Discrete Groups Acting on Trees
Author/Authors :
Bryan Clair، نويسنده , , Shahriar Mokhtari-Sharghi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
30
From page :
591
To page :
620
Abstract :
This paper generalizes Bassʹ work on zeta functions for uniform tree lattices. Using the theory of von Neumann algebras, machinery is developed to define the zeta function of a discrete group of automorphisms of a bounded degree tree. The main theorems relate the zeta function to determinants of operators defined on edges or vertices of the tree. A zeta function associated to a non-uniform tree lattice with appropriate Hilbert representation is defined. Zeta functions are defined for infinite graphs with a cocompact or finite covolume group action.
Keywords :
tree lattice , Von Neumann algebra , zeta function
Journal title :
Journal of Algebra
Serial Year :
2001
Journal title :
Journal of Algebra
Record number :
695366
Link To Document :
بازگشت