Title of article :
Forms of Coalgebras and Hopf Algebras
Author/Authors :
Darren B. Parker، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
We study forms of coalgebras and Hopf algebras (i.e., coalgebras and Hopf algebras which are isomorphic after a suitable extension of the base field). We classify all forms of grouplike coalgebras according to the structure of their simple subcoalgebras. For Hopf algebras, given a W*-Galois field extension K L for W a finite-dimensional semisimple Hopf algebra and a K-Hopf algebra H, we show that all L-forms of H are invariant rings [L H]W under appropriate actions of W on L H. We apply this result to enveloping algebras, duals of finite-dimensional Hopf algebras, and adjoint actions of finite-dimensional semisimple cocommutative Hopf algebras.
Keywords :
Hopf algebra , Coalgebra , descent theory , Galois extension , invariants
Journal title :
Journal of Algebra
Journal title :
Journal of Algebra