Title of article :
Quasi-permutation Representations of the Group GL2(q)
Author/Authors :
M. R. Darafsheh، نويسنده , , M. Ghorbany، نويسنده , , A. Daneshkhah، نويسنده , , H. Behravesh، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
A square matrix over the complex field with non-negative integral trace is called a quasi-permutation matrix. For a finite group G the minimal degree of a faithful permutation representation of G is denoted by p(G). The minimal degree of a faithful representation of G by quasi-permutation matrices over the rationals and the complex numbers are denoted by q(G) and c(G) respectively. Finally r(G) denotes the minimal degree of a faithful rational valued complex character of G. In this paper p(G), q(G), c(G), and r(G) are calculated for the group G = GL2(q).
Keywords :
General linear group , quasi-permutation
Journal title :
Journal of Algebra
Journal title :
Journal of Algebra