Title of article :
An Independence Result on Cotorsion Theories over Valuation Domains
Author/Authors :
S. Bazzoni، نويسنده , , L. Salce، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
27
From page :
294
To page :
320
Abstract :
It is shown that, over suitable valuation domains R with field of quotients Q, the cotorsion theory K generated by K = Q/R coincides with the cotorsion theory ∂ cogenerated by the Fuchsʹ divisible module ∂, provided that Gödelʹs Axiom of Constructibility V = L is assumed. On the other hand, assuming Martinʹs Axiom and the negation of the Continuum Hypothesis, it is proved that the cotorsion theory K is strictly smaller than ∂ by exhibiting a strongly ( 1 − K)-free divisible module M of projective dimension 2 such that Ext1R(M, K) = 0. Applications to Whitehead modules are derived.
Keywords :
Martinיs Axiom , Whitehead module , coherent module , cotorsion theory , valuation domain , G?delיs Axiom
Journal title :
Journal of Algebra
Serial Year :
2001
Journal title :
Journal of Algebra
Record number :
695588
Link To Document :
بازگشت