Title of article :
Linear Groups Definable in o-Minimal Structures
Author/Authors :
Y. Peterzil، نويسنده , , A. Pillay، نويسنده , , S. Starchenko، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
23
From page :
1
To page :
23
Abstract :
We study subgroups G of GL(n, R) definable in o-minimal expansions M = (R, +, • ,…) of a real closed field R. We prove several results such as: (a) G can be defined using just the field structure on R together with, if necessary, power functions, or an exponential function definable in M. (b) If G has no infinite, normal, definable abelian subgroup, then G is semialgebraic. We also characterize the definably simple groups definable in o-minimal structures as those groups elementarily equivalent to simple Lie groups, and we give a proof of the Kneser–Tits conjecture for real closed fields
Journal title :
Journal of Algebra
Serial Year :
2002
Journal title :
Journal of Algebra
Record number :
695723
Link To Document :
بازگشت