Title of article :
On the Normalizer Problem,
Author/Authors :
E. Jespers، نويسنده , , S. O. Juriaans، نويسنده , , J. M. de Miranda، نويسنده , , J. R. Rogerio، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
In this paper the normalizer problem of an integral group ring of an arbitrary group G is investigated. It is shown that any element of the normalizer 1(G) of G in the group of normalized units 1( G) is determined by a finite normal subgroup. This reduction to finite normal subgroups implies that the normalizer property holds for many classes of (infinite) groups, such as groups without non-trivial 2-torsion, torsion groups with a normal Sylow 2-subgroup, and locally nilpotent groups. Further it is shown that the commutator of 1(G) equals G′ and 1(G)/G is finitely generated if the torsion subgroup of the finite conjugacy group of G is finite.
Keywords :
Automorphism , Group ring , Normalizer , Unit
Journal title :
Journal of Algebra
Journal title :
Journal of Algebra