Title of article :
Homogeneous coordinates for algebraic varieties
Author/Authors :
Florian Berchtold، نويسنده , , Jürgen Hausen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
35
From page :
636
To page :
670
Abstract :
We associate to every divisorial (e.g., smooth) variety X with only constant invertible global functions and finitely generated Picard group a Pic(X)-graded homogeneous coordinate ring. This generalizes the usual homogeneous coordinate ring of the projective space and constructions of Cox and Kajiwara for smooth and divisorial toric varieties. We show that the homogeneous coordinate ring defines in fact a fully faithful functor. For normal complex varieties X with only constant global functions, we even obtain an equivalence of categories. Finally, the homogeneous coordinate ring of a locally factorial complete irreducible variety with free finitely generated Picard group turns out to be a Krull ring admitting unique factorization.
Journal title :
Journal of Algebra
Serial Year :
2003
Journal title :
Journal of Algebra
Record number :
696317
Link To Document :
بازگشت