Title of article :
Larson–Sweedler theorem and the role of grouplike elements in weak Hopf algebras
Author/Authors :
Peter Vecsernyés، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
50
From page :
471
To page :
520
Abstract :
We extend the Larson–Sweedler theorem [Amer. J. Math. 91 (1969) 75] to weak Hopf algebras by proving that a finite dimensional weak bialgebra is a weak Hopf algebra iff it possesses a non-degenerate left integral. We show that the category of modules over a weak Hopf algebra is autonomous monoidal with semisimple unit and invertible modules. We also reveal the connection of invertible modules to left and right grouplike elements in the dual weak Hopf algebra. Defining distinguished left and right grouplike elements, we derive the Radford formula [Amer. J. Math. 98 (1976) 333] for the fourth power of the antipode in a weak Hopf algebra and prove that the order of the antipode is finite up to an inner automorphism by a grouplike element in the trivial subalgebra AT of the underlying weak Hopf algebra A.
Journal title :
Journal of Algebra
Serial Year :
2003
Journal title :
Journal of Algebra
Record number :
696457
Link To Document :
بازگشت