Title of article :
Automorphisms fixing a variable of K x,y,z
Author/Authors :
Francesca Benanti and Vesselin Drensky، نويسنده , , Jie-Tai Yu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
9
From page :
250
To page :
258
Abstract :
We study automorphisms φ of the free associative algebra K x,y,z over a field K such that φ(x),φ(y) are linear with respect to x,y and φ(z)=z. We establish a sufficient and necessary condition for the tameness of these automorphisms in the class of all automorphisms fixing z, which gives an algorithm to recognize the wild ones. In particular, we prove that the well-known Anick automorphism is wild in this sense. This class of automorphisms induces tame automorphisms of the polynomial algebra K[x,y,z]. For n>2 the automorphisms of K x1,…,xn,z which fix z and are linear in the xis are tame.
Keywords :
Tame automorphisms , Automorphisms of free and polynomial algebras , Wild automorphisms
Journal title :
Journal of Algebra
Serial Year :
2005
Journal title :
Journal of Algebra
Record number :
697228
Link To Document :
بازگشت