Title of article :
A Gelʹfand model for a Weyl group of type Dn and the branching rules Dn Bn
Author/Authors :
J.O. Araujo، نويسنده , , J.J. Bige?n، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
20
From page :
97
To page :
116
Abstract :
A Gelʹfand model for a finite group G is a complex representation of G which is isomorphic to the direct sum of all the irreducible representations of G (see [J. Soto-Andrade, Geometrical Gelʹfand models, tensor quotients and Weyl representations, in: Proc. Sympos. Pure Math., vol. 47 (2), Amer. Math. Soc., Providence, RI, 1987, pp. 306–316. [12]]). Gelʹfand models for the symmetric group, Weyl groups of type Bn and the linear group over a finite field can be found in [C. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, New York, 1988. [6]; J.L. Aguado, J.O. Araujo, A Gelʹfand model for the symmetric group, Comm. Algebra 29 (4) (2001) 1841–1851; J.O. Araujo, A Gelʹfand model for a Weyl group of type Bn, Beiträge Algebra Geom. 44 (2) (2003) 359–373; A.A. Klyachko, Models for the complex representations of the groups G(n,q), Math. USSR Sb. 48 (1984) 365–380. [10]]. When K is a field of characteristic zero and G is a finite subgroup of the linear group, we give a finite-dimensional K-subspace of the polynomial ring K[x1,…,xn]. If G is a Weyl group of type An or Bn (see [N. Bourbaki, Éléments de mathématique. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, vol. 34, Hermann, 1968. [4]]), provides a Gelʹfand model for these groups as shown in [J.L. Aguado, J.O. Araujo, A Gelʹfand model for the symmetric group, Comm. Algebra 29 (4) (2001) 1841–1851; J.O. Araujo, A Gelʹfand model for a Weyl group of type Bn, Beiträge Algebra Geom. 44 (2) (2003) 359–373]. In this work we show that if G is a Weyl group of type D2n+1, provides a Gelʹfand model for this group. We also describe completely but this is not a Gelʹfand model for a Weyl group of type D2n, instead a subspace of , is a Gelʹfand model. We also give simple proofs of the branching rules , a generator for each simple -module and a formula for the dimension for all the simple -modules and all the simple -modules.
Journal title :
Journal of Algebra
Serial Year :
2005
Journal title :
Journal of Algebra
Record number :
697307
Link To Document :
بازگشت