Title of article :
The Jacobian Conjecture: Linear triangularization for homogeneous polynomial maps in dimension three
Author/Authors :
Michiel de Bondt، نويسنده , , Arno van den Essen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
13
From page :
294
To page :
306
Abstract :
Let k be a field of characteristic zero and a polynomial map of the form F=x+H, where H is homogeneous of degree d 2. We show that the Jacobian Conjecture is true for such mappings. More precisely, we show that if JH is nilpotent there exists an invertible linear map T such that T−1HT=(0,h2(x1),h3(x1,x2)), where the hi are homogeneous of degree d. As a consequence of this result, we show that all generalized Drużkowski mappings , where Li are linear forms for all i and d 2, are linearly triangularizable if JH is nilpotent and rkJH 3.
Journal title :
Journal of Algebra
Serial Year :
2005
Journal title :
Journal of Algebra
Record number :
697318
Link To Document :
بازگشت