Title of article :
On bilinear maps on matrices with applications to commutativity preservers
Author/Authors :
Matej Bre?ar، نويسنده , , Peter ?emrl، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
35
From page :
803
To page :
837
Abstract :
Let Mn be the algebra of all n×n matrices over a commutative unital ring , and let be a -module. Various characterizations of bilinear maps with the property that {x,y}=0 whenever x any y commute are given. As the main application of this result we obtain the definitive solution of the problem of describing (not necessarily bijective) commutativity preserving linear maps from Mn into Mn for the case where is an arbitrary field; moreover, this description is valid in every finite-dimensional central simple algebra.
Keywords :
Central simple algebra , Nonassociative product , Functional identity , Lie-admissible algebra , Commutativity preserving map , Matrix algebra
Journal title :
Journal of Algebra
Serial Year :
2006
Journal title :
Journal of Algebra
Record number :
697589
Link To Document :
بازگشت