Title of article :
Large indecomposable modules over local rings
Author/Authors :
W. Hassler، نويسنده , , R. Karr، نويسنده , , L. Klingler، نويسنده , , R. Wiegand، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
14
From page :
202
To page :
215
Abstract :
For commutative, Noetherian, local ring R of dimension one, we show that, if R is not a homomorphic image of a Dedekind-like ring, then R has indecomposable finitely generated modules that are free of arbitrary rank at each minimal prime. For Cohen–Macaulay ring R, this theorem was proved in [W. Hassler, R. Karr, L. Klingler, R. Wiegand, Indecomposable modules of large rank over Cohen–Macaulay local rings, Trans. Amer. Math. Soc., in press]; in this paper we handle the general case.
Keywords :
Indecomposable module , Torsion-free rank , Dedekind-like ring
Journal title :
Journal of Algebra
Serial Year :
2006
Journal title :
Journal of Algebra
Record number :
697640
Link To Document :
بازگشت