Title of article :
A classification of certain maximal subgroups of symmetric groups
Author/Authors :
Benjamin Newton، نويسنده , , Bret Benesh، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
6
From page :
1108
To page :
1113
Abstract :
Problem 12.82 of the Kourovka Notebook asks for all ordered pairs (n,m) such that the symmetric group Sn embeds in Sm as a maximal subgroup. One family of such pairs is obtained when m=n+1. Kalužnin and Klin [L.A. Kalužnin, M.H. Klin, Certain maximal subgroups of symmetric and alternating groups, Math. Sb. 87 (1972) 91–121] and Halberstadt [E. Halberstadt, On certain maximal subgroups of symmetric or alternating groups, Math. Z. 151 (1976) 117–125] provided an additional infinite family. This paper answers the Kourovka question by producing a third infinite family of ordered pairs and showing that no other pairs exist.
Journal title :
Journal of Algebra
Serial Year :
2006
Journal title :
Journal of Algebra
Record number :
697731
Link To Document :
بازگشت