Title of article :
On a conjecture of G.E. Wall
Author/Authors :
Martin W. Liebeck، نويسنده , , Laszlo Pyber، نويسنده , , Aner Shalev، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
14
From page :
184
To page :
197
Abstract :
We prove that if G is a finite almost simple group, having socle of Lie type of rank r, then the number of maximal subgroups of G is at most Cr−2/3G, where C is an absolute constant. This verifies a conjecture of Wall for groups of sufficiently large rank. Using this we prove that any finite group G has at most 2CG3/2 maximal subgroups.
Keywords :
finite groups , Maximal subgroups , Finite simple groups
Journal title :
Journal of Algebra
Serial Year :
2007
Journal title :
Journal of Algebra
Record number :
698318
Link To Document :
بازگشت